POINTWISE CONVERGENT EXPANSIONS IN q-FOURIER-BESSEL SERIES

نویسندگان

  • L. D. ABREU
  • R. ALVAREZ-NODARSE
  • J. L. CARDOSO
چکیده

Abstract: We define q-analogues of Fourier-Bessel series, by means of complete qorthogonal systems constructed with the third Jackson q-Bessel function. Sufficient conditions for pointwise convergence of these series are obtained, in terms of a general convergence principle valid for other Fourier series on grids defined over numerable sets. The results are illustrated with specific examples of developments in q-Fourier-Bessel series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear biorthogonal expansions and the Dunkl kernel on the real line

We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and Fourier-Neumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we...

متن کامل

The Bochner-Riesz means for Fourier-Bessel expansions: Norm inequalities for the maximal operator and almost everywhere convergence

In this paper, we develop a thorough analysis of the boundedness properties of the maximal operator for the Bochner-Riesz means related to the Fourier-Bessel expansions. For this operator, we study weighted and unweighted inequalities in the spaces Lp((0, 1), x2ν+1 dx). Moreover, weak and restricted weak type inequalities are obtained for the critical values of p. As a consequence, we deduce th...

متن کامل

Bilinear biorthogonal expansions and the spectrum of an integral operator

We study an extension of the classical Paley-Wiener space structure, which is based on bilinear expansions of integral kernels into biorthogonal sequences of functions. The structure includes both sampling expansions and FourierNeumann type series as special cases. Concerning applications, several new results are obtained. From the Dunkl analogue of Gegenbauer’s expansion of the plane wave, we ...

متن کامل

Transplantation and Multiplier Theorems for Fourier-bessel Expansions

Proved are weighted transplantation inequalities for Fourier-Bessel expansions. These extend known results on this subject by considering the largest possible range of parameters, allowing more weights and admitting a shift. The results are then used to produce a fairly general multiplier theorem with power weights for considered expansions. Also fractional integral results and conjugate functi...

متن کامل

Radial basis functions and corresponding zonal series expansions on the sphere

Since radial positive definite functions on R remain positive definite when restricted to the sphere, it is natural to ask for properties of the zonal series expansion of such functions which relate to properties of the Fourier-Bessel transform of the radial function. We show that the decay of the Gegenbauer coefficients is determined by the behavior of the Fourier-Bessel transform at the origi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006